China Good quality WREN Hydraulic Cylinder Series CLRG8002 Double-Acting High Tonnage Cylinder (800 ton) vacuum pump connector

Product Description

 

Product Description

Capacity  Stroke  Model Min Height Outside Diameter Effective Area Oil Capacity Plunger Diameter Weight 
(Ton) (mm)  (mm)  (mm) (cm²) (cm³) (mm) (Kg)
Push Pull         Push Pull Push Pull    
10 4. 1 254 CLRG1571 409 76 14.5 5.9 368 149 33 12
10 4. 1 305 CLRG1012 457 76 14.5 5.9 442 180 33 14
50 22.6 150 CLRG506 325 127 70.8 32.3 1062 484 70 30
50 22.6 300 CLRG5012 475 127 70.8 32.3 2124 969 70 52
100 44 50 CLRG 1002 182 188 132. 7 61.9 664 310 95 27
100 44 100 CLRG 1004 232 188 132.7 61.9 1327 619 95 33
100 44 150 CLRG 1006 282 188 132.7 61.9 1991 929 95 37
100 44 200 CLRG 1008 332 188 132.7 61.9 2654 1238 95 44
100 44 250 CLRG1571 382 188 132.7 61.9 3318 1548 95 50
100 44 300 CLRG10012 432 188 132.7 61.9 3981 1857 95 57
150 67.9 50 CLRG 1502 196 216 201 97 1005 485 115 47
150 67.9 100 CLRG 1504 246 216 201 97 2571 970 115 57
150 67.9 150 CLRG1506 296 216 201 97 3015 1455 115 67
150 67.9 200 CLRG 1508 346 216 201 97 4571 1940 115 77
150 67.9 250 CLRG15571 396 216 201 97 5571 2425 115 87
150 67.9 300 CLRG15012 446 216 201 97 6030 2910 115 97
200 93 50 CLRG2002 235 242 265.9 133. 1 1329 665 130 67
200 93 150 CLRG2006 335 242 265.9 133. 1 3988 1996 130 92
200 93 250 CLRG2571 435 242 265.9 133. 1 6647 3327 130 117
250 107 50 CLRG2502 236 288 366.4 152.6 1832 763 165 105
250 107 150 CLRG2506 336 288 366.4 152. 6 5496 2289 165 141
250 107 250 CLRG25571 436 288 366.4 152. 6 9160 3815 165 176
300 121 50 CLRG3002 350 325 456.2 172. 6 2281 863 190 204
300 121 150 CLRG3006 412 325 456.2 172. 6 6843 2589 190 252
300 121 250 CLRG3571 512 325 456.2 172. 6 11405 4315 190 299
400 138 50 CLRG4002 370 367 559.9 196.8 2799 984 215 281
400 138 150 CLRG4006 470 367 559.9 196.8 8399 2952 215 342
400 138 250 CLRG4571 570 367 559.9 196.8 13998 4920 215 405
500 168 50 CLRG5002 400 405 730. 6 239. 7 3653 1198 250 411
500 168 150 CLRG5006 500 405 730. 6 239. 7 10959 3595 250 493
500 168 250 CLRG5571 600 405 730. 6 239. 7 18265 5992 250 575
600 207 50 CLRG6002 445 450 855.3 295.4 4277 1477 267 494
600 207 150 CLRG6006 545 450 855.3 295.4 12830 4431 267 586
600 207 250 CLRG6571 645 450 855.3 295.4 21383 7385 267 678
800 252 50 CLRG8002 695 515 1164 360 5820 1800 320 759
800 252 150 CLRG8006 595 515 1164 360 17460 5400 320 885
800 252 250 CLRG8571 695 515 1164 360 29100 9000 320 1019
1000 380 50 CLRG 10002 535 580 1465. 7 541.7 7328 2708 342 1012
1000 380 150 CLRG 10006 635 580 1465. 7 541.7 21985 8125 342 1168
1000 380 250 CLRG10571 735 580 1465. 7 541.7 36418 13543 342 1325

Company Profile

Why Choose Us

Quality control

Certifications

Exhibition photos

Our Customers

 

FAQ

Q: How to order?
A: Inquire with us→ sample customization→ use scenario inform→ receive our product design recommendation→ negotiate details→ confirm the sample→ CHINAMFG the contract/deposit→mass production→ the goods are ready→ balance/delivery→ further cooperation.

Q: How about the sample order?
A: We can provide the sample price, please contact us for details.

Q: Which shipping method is available?
A: By sea, by air, or by express (DHL, UPS, FedEx). Other shipping methods are also available, please contact us for details.

Q: How long is the delivery [production] and shipment?
A: The delivery time depends on the quantity you ordered. Shipped from the factory, within 3 days for standard parts and within 10 days for non-standard parts.

Q: My package is missing some products, what can I do?
A: Please contact our support team, we will confirm the contents of your order with the packaging, and compensate for the shipment. We apologize for the inconvenience.

Q: How to confirm the payment?
A: We accept T/T payment method. The first type is 30% deposit order confirmed, and the remaining 70% is paid before shipment, and the second type is 100% paid before shipment. Other payment methods are also acceptable, please contact us before you pay by other payment methods.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: CE, ISO9001
Pressure: High Pressure
Work Temperature: Normal Temperature
Acting Way: Double Acting
Working Method: Straight Trip
Adjusted Form: Switching Type
Customization:
Available

|

hydraulic cylinder

Can hydraulic cylinders be used for precise operations like CNC machining or molding?

Yes, hydraulic cylinders can be used for precise operations like CNC machining or molding. While hydraulic systems are commonly associated with heavy-duty applications, they can also provide the necessary precision and control required for precise operations in CNC machining and molding processes. Here’s a detailed explanation of how hydraulic cylinders can be utilized for such precise operations:

1. Force and Control:

– Hydraulic cylinders are capable of generating substantial force, which is essential for precise operations in CNC machining and molding. By using hydraulic pressure, the cylinders can deliver the required force to cut or shape materials accurately or exert pressure for molding operations. The hydraulic system allows precise control over the force applied, ensuring consistent and reliable performance.

2. Adjustable Speed and Positioning:

– Hydraulic cylinders offer adjustable speed and precise positioning capabilities, making them suitable for precise operations. By controlling the flow of hydraulic fluid, the speed of the cylinder’s movement can be adjusted according to specific requirements. This adaptability allows for fine-tuning the machining or molding process, achieving the desired precision in material removal or shaping. Hydraulic systems also enable accurate positioning of tools or molds, ensuring precise operations.

3. Integrated Feedback Systems:

– Advanced hydraulic systems can incorporate feedback sensors and control mechanisms to enhance precision in CNC machining and molding. These sensors provide real-time information about the position, speed, and force exerted by the hydraulic cylinders. The control system processes this data and adjusts the flow of hydraulic fluid accordingly, allowing for precise and accurate control over the operations. The feedback systems help maintain consistent performance and compensate for any deviations, ensuring high precision.

4. Damping and Vibration Control:

– Hydraulic cylinders can be equipped with damping mechanisms to minimize vibrations and ensure stability during CNC machining or molding operations. Vibrations can negatively impact precision by causing tool chatter or material deformation. By incorporating cushioning or damping features, hydraulic cylinders help absorb shocks and suppress vibrations, resulting in smoother and more accurate operations.

5. Customization and Adaptability:

– Hydraulic cylinders can be customized and adapted to meet the specific requirements of CNC machining or molding processes. Engineers can design cylinders with unique dimensions, stroke lengths, mounting options, and sealing arrangements to fit into equipment or systems with precise specifications. Customized hydraulic cylinders ensure optimal performance and compatibility for precise operations, enabling seamless integration into CNC machines or molding equipment.

6. Energy Efficiency:

– Hydraulic systems can be designed to be energy-efficient, contributing to cost savings in CNC machining or molding operations. By utilizing variable speed pumps, efficient control valves, and well-designed hydraulic circuits, energy consumption can be optimized. This efficiency reduces heat generation, leading to improved stability and precision in operations while minimizing energy costs.

7. Maintenance and Calibration:

– Regular maintenance and calibration of hydraulic systems are essential to maintain their precision in CNC machining or molding applications. Proper lubrication, inspection of seals, and replacement of worn-out components help ensure optimal performance. Regular calibration of control systems and feedback sensors ensures accurate readings and reliable operation, contributing to precision in machining or molding processes.

In summary, hydraulic cylinders can be effectively used for precise operations like CNC machining or molding. Their ability to generate substantial force, adjustable speed and positioning, integration with feedback systems, damping and vibration control, customization and adaptability, energy efficiency, and proper maintenance contribute to achieving the required precision in these operations. By leveraging the strengths of hydraulic systems, manufacturers can enhance the accuracy and reliability of CNC machining or molding processes, resulting in high-quality products and improved productivity.

hydraulic cylinder

Advancements in Hydraulic Cylinder Technology Improving Corrosion Resistance

Advancements in hydraulic cylinder technology have led to significant improvements in corrosion resistance. Corrosion is a major concern in hydraulic systems, especially in environments where cylinders are exposed to moisture, chemicals, or corrosive agents. These advancements aim to enhance the durability and longevity of hydraulic cylinders. Let’s explore some of the key advancements in hydraulic cylinder technology that have improved corrosion resistance:

  1. Corrosion-Resistant Materials: The use of corrosion-resistant materials is a fundamental advancement in hydraulic cylinder technology. Stainless steel, for example, offers excellent resistance to corrosion, making it a popular choice in marine, offshore, and other corrosive environments. Additionally, advancements in metallurgy have led to the development of specialized alloys and coatings that provide enhanced corrosion resistance, extending the lifespan of hydraulic cylinders.
  2. Surface Treatments and Coatings: Various surface treatments and coatings have been developed to protect hydraulic cylinders from corrosion. These treatments can include electroplating, galvanizing, powder coating, and specialized corrosion-resistant coatings. These coatings create a barrier between the cylinder surface and corrosive elements, preventing direct contact and inhibiting the onset of corrosion. The selection of appropriate coatings depends on the specific application and environmental conditions.
  3. Sealing Technology: Effective sealing systems are crucial in preventing water, moisture, and contaminants from entering the cylinder and causing corrosion. Advancements in sealing technology have led to the development of high-quality seals and advanced sealing designs that offer superior resistance to corrosion. These seals are typically made from materials specifically engineered to withstand corrosive environments, ensuring long-term sealing performance and minimizing the risk of corrosion-related issues.
  4. Improved Surface Finishes: The surface finish of hydraulic cylinders plays a role in their resistance to corrosion. Advancements in machining and polishing techniques have allowed for smoother and more uniform surface finishes. Smoother surfaces reduce the likelihood of corrosion initiation and make it easier to clean and maintain hydraulic cylinders. Additionally, specialized finishes, such as passivation or chemical treatments, can be applied to further enhance corrosion resistance.
  5. Environmental Protection Features: Hydraulic cylinders can be equipped with additional features to protect against corrosion. These features may include protective boots, bellows, or shields that guard vulnerable areas from exposure to corrosive agents. By incorporating these protective elements into the design, hydraulic cylinders can withstand harsh environments and minimize the risk of corrosion-related damage.

In summary, advancements in hydraulic cylinder technology have significantly improved corrosion resistance. The use of corrosion-resistant materials, advanced surface treatments and coatings, innovative sealing technology, improved surface finishes, and the incorporation of environmental protection features have all contributed to enhanced durability and longevity of hydraulic cylinders in corrosive environments. These advancements ensure reliable performance and reduce the maintenance and replacement costs associated with corrosion-related issues.

hydraulic cylinder

How do hydraulic cylinders handle variations in load and pressure during operation?

Hydraulic cylinders are designed to handle variations in load and pressure during operation, making them versatile and efficient in various applications. Hydraulic systems use the principle of transmitting force through incompressible fluid to generate linear motion. Here’s a detailed explanation of how hydraulic cylinders handle variations in load and pressure:

1. Load Handling:

– Hydraulic cylinders are capable of handling different loads by utilizing the principle of Pascal’s law. According to Pascal’s law, when pressure is applied to a fluid in a confined space, the pressure is transmitted equally in all directions. In a hydraulic cylinder, the force applied to the piston results in an equal force output at the rod end of the cylinder. The size of the piston and the pressure exerted determine the force generated by the cylinder. Therefore, hydraulic cylinders can handle a wide range of loads by adjusting the pressure applied to the fluid.

2. Pressure Compensation:

– Hydraulic systems incorporate pressure compensation mechanisms to handle variations in pressure during operation. Pressure compensating valves or regulators are often used to maintain a consistent pressure in the hydraulic system, regardless of load changes. These valves automatically adjust the flow rate or pressure to ensure stable and controlled operation of the hydraulic cylinder. By compensating for pressure variations, hydraulic cylinders can maintain a consistent force output and prevent damage or instability due to excessive pressure.

3. Control Valves:

– Control valves play a crucial role in managing variations in pressure and load during hydraulic cylinder operation. Directional control valves, such as spool valves or poppet valves, control the flow of hydraulic fluid into and out of the cylinder, enabling precise control of the cylinder’s extension and retraction. By adjusting the position of the control valve, the speed and force exerted by the hydraulic cylinder can be regulated to match the load and pressure requirements of the application. Control valves allow for efficient handling of variations in load and pressure by providing fine-tuned control over the hydraulic system.

4. Accumulators:

– Hydraulic accumulators are often used to handle fluctuations in pressure and load. Accumulators store hydraulic fluid under pressure, which can be released or absorbed as needed to compensate for sudden changes in load or pressure. When the load on the hydraulic cylinder decreases, the accumulator releases stored fluid to maintain pressure and prevent pressure spikes. Conversely, when the load on the cylinder increases, the accumulator absorbs excess fluid to maintain system stability. By utilizing accumulators, hydraulic cylinders can effectively handle variations in load and pressure, ensuring smooth and controlled operation.

5. Feedback and Control Systems:

– Advanced hydraulic systems may incorporate feedback and control systems to monitor and adjust the operation of hydraulic cylinders in real-time. Position sensors or pressure sensors provide feedback on the cylinder’s position, force, and pressure, allowing the control system to make continuous adjustments to optimize performance. These systems can automatically adapt to variations in load and pressure, ensuring precise control and efficient operation of the hydraulic cylinder.

6. Design Considerations:

– Proper design considerations, such as selecting the appropriate cylinder size, piston diameter, and rod diameter, are essential for handling variations in load and pressure. The design should account for the maximum anticipated load and pressure conditions to ensure the hydraulic cylinder operates within its specified range. Additionally, the selection of suitable seals, materials, and components that can withstand the anticipated load and pressure variations is crucial for maintaining the reliability and longevity of the hydraulic cylinder.

By utilizing the principles of hydraulic systems, incorporating pressure compensation mechanisms, employing control valves and accumulators, and implementing feedback and control systems, hydraulic cylinders can effectively handle variations in load and pressure during operation. These features and design considerations allow hydraulic cylinders to adapt and perform optimally in a wide range of applications and operating conditions.

China Good quality WREN Hydraulic Cylinder Series CLRG8002 Double-Acting High Tonnage Cylinder (800 ton)   vacuum pump connector	China Good quality WREN Hydraulic Cylinder Series CLRG8002 Double-Acting High Tonnage Cylinder (800 ton)   vacuum pump connector
editor by CX 2023-12-28

Recent Posts