China manufacturer 10L High Pressure Oxygen Cylinder Made in China vacuum pump and compressor

Product Description

TPED/CE/EN/ISO/DOT/BV/SGS 2L/5L/7L/8L/10L/14L/20L small portable seamless steel gas cylinders filled with oxygen gas,co2 gas, argon gas,helium gas,mixture gas.etc.

Type   (mm)
Outside
Diameter
(L)
Water
Capacity
(mm)
()
Height
(Withoutvalve)
(Kg)
(,)
Weight(Without
valve,cap)
(Mpa)
Working
Pressure
(mm)
Design Wall
Thickness
Material
Grades
ISO102-1.8-150 102 1.8 325 3.5 150 3 37Mn
ISO102-3-150 3 498 5.2
ISO102-3.4-150 3.4 555 5.7
ISO102-4.4-150 4.4 700 7.2
ISO108-1.4-150 108 1.4 240 2.9 150 3.2 37Mn
ISO108-1.8-150 1.8 285 3.3
ISO108-2-150 2 310 3.6
ISO108-3-150 3 437 4.9
ISO108-3.6-150 3.6 515 5.7
ISO108-4-150 4 565 6.2
ISO108-5-150 5 692 7.5
ISO140-3.4-150 140 3.4 321 5.8 150 4.1 37Mn
ISO140-4-150 4 365 6.4
ISO140-5-150 5 440 7.6
ISO140-6-150 6 515 8.8
ISO140-6.3-150 6.3 545 9.2
ISO140-6.7-150 6.7 567 9.5
ISO140-7-150 7 595 9.9
ISO140-7.5-150 7.5 632 10.5
ISO140-8-150 8 665 11
ISO140-9-150 9 745 12.2
ISO140-10-150 10 830 13.5
ISO140-11-150 11 885 14.3
ISO140-13.4-150 13.4 1070 17.1
ISO140-14-150 14 1115 17.7
ISO159-7-150 159 7 495 9.8 150 4.7 37Mn
ISO159-8-150 8 554 10.8
ISO159-9-150 9 610 11.7
ISO159-10-150 10 665 12.7
ISO159-11-150 11 722 13.7
ISO159-12-150 12 790 14.8
ISO159-12.5-150 12.5 802 15
ISO159-13-150 13 833 15.6
ISO159-13.4-150 13.4 855 16
ISO159-13.7-150 13.7 878 16.3
ISO159-14-150 14 890 16.5
ISO159-15-150 15 945 17.5
ISO159-16-150 16 1000 18.4
ISO180-8-150 180 8 480 13.8 150 5.3 37Mn
ISO180-10-150 10 570 16.1
ISO180-12-150 12 660 18.3
ISO180-15-150 15 790 21.6
ISO180-20-150 20 1015 27.2
ISO180-21-150 21 1061 28.3
ISO180-21.6-150 21.6 1087 29
ISO180-22.3-150 22.3 1100 29.4
ISO219-20-150 219 20 705 27.8 150 6.1 37Mn
ISO219-25-150 25 855 32.8
ISO219-27-150 27 915 34.8
ISO219-36-150 36 1185 43.9
ISO219-38-150 38 1245 45.9
ISO219-40-150 40 1305 47.8
ISO219-45-150 45 1455 52.9
ISO219-46.7-150 46.7 1505 54.6
ISO219-50-150 50 1605 57.9

RECORD OF HYDROSTATIC TESTS ON CYLINDERS                Time≥ 60S
S.N Serial No. The weight without valve&cap(kg) Volumetric Capacity(L)  Total expansion(ml) Permanent expansion(ml)  Percent of Permanent to totalexpanison(%) Test Pressure 250Bar  Lot and Batch No.
1 20S049001 13.7 10.3 76.8  1 1.3  25 S05
2 20S049002 13.7 10.2 78.9  1.1 1.4  25 S05
3 20S049003 14.1 10.2 76.0  0.6 0.8  25 S05
4 20S049004 14.1 10.2 78.0  0.9 1.2  25 S05
5 20S049005 14 10.2 77.0  0.7 0.9  25 S05
6 20S049006 14.3 10.2 77.0  0.6 0.8  25 S05
7 20S049007 13.8 10.3 77.8  1 1.3  25 S05
8 20S049008 14 10.2 76.0  0.6 0.8  25 S05
9 20S049009 14.1 10.2 78.0  0.7 0.9  25 S05
10 20S049571 13.9 10.2 76.0  0.8 1.1  25 S05
11 20S049011 14.1 10.2 79.9  0.7 0.9  25 S05
12 20S049012 13.9 10.1 78.1  0.8 1.0  25 S05
13 20S049013 14 10.2 78.0  0.8 1.0  25 S05
14 20S049014 13.9 10.1 79.1  0.7 0.9  25 S05
15 20S049015 14 10.2 77.0  0.9 1.2  25 S05
16 20S049016 13.9 10.2 77.0  0.8 1.0  25 S05
17 20S049017 14 10.2 78.9  0.7 0.9  25 S05
18 20S049018 14.1 10.2 76.0  0.6 0.8  25 S05
19 20S049019 13.8 10.2 78.0  0.9 1.2  25 S05
20 20S049571 14 10.2 76.0  0.7 0.9  25 S05
21 20S049571 14 10.2 79.9  0.9 1.1  25 S05
22 20S049571 14 10.2 78.0  0.9 1.2  25 S05
23 20S049571 13.9 10.3 78.8  0.7 0.9  25 S05
24 20S049571 14 10.2 79.9  0.8 1.0  25 S05
25 20S049571 14.1 10.2 79.9  0.9 1.1  25 S05
26 20S049026 14.1 10.2 78.0  0.8 1.0  25 S05
27 20S049571 14 10.2 77.0  0.9 1.2  25 S05
28 20S049571 14 10.2 78.9  1 1.3  25 S05
29 20S049571 14 10.3 75.8  0.8 1.1  25 S05
30 20S049030 13.9 10.2 78.9  0.8 1.0  25 S05
31 20S049031 13.9 10.1 79.1  1 1.3  25 S05
32 20S049032 14 10.3 76.8  0.9 1.2  25 S05
33 20S049033 14 10.2 76.0  0.7 0.9  25 S05
34 20S049034 14 10.2 78.9  0.9 1.1  25 S05
35 20S049035 13.9 10.2 79.9  1 1.3  25 S05
36 20S049036 14 10.3 76.8  1.1 1.4  25 S05
37 20S049037 13.8 10.2 78.9  0.6 0.8  25 S05
38 20S049038 13.9 10.2 77.0  0.8 1.0  25 S05
39 20S049039 13.8 10.2 78.0  0.8 1.0  25 S05
40 20S049040 13.9 10.2 78.9  1 1.3  25 S05
41 20S049041 14 10.2 78.0  0.7 0.9  25 S05
42 20S049042 14.2 10.1 81.1  1.1 1.4  25 S05
43 20S049043 14.1 10.2 78.9  0.9 1.1  25 S05
44 20S049044 13.9 10.1 81.1  0.8 1.0  25 S05
45 20S049045 13.9 10.2 78.9  0.9 1.1  25 S05
46 20S049046 14.1 10.2 78.9  1 1.3  25 S05
47 20S049047 13.9 10.2 79.9  0.9 1.1  25 S05
48 20S049048 13.9 10.1 81.1  0.9 1.1  25 S05
49 20S049049 13.6 10.4 75.7  1 1.3  25 S05
50 20S049050 13.9 10.1 77.1  0.8 1.0  25 S05

 

Material: Steel
Usage: Oxygen Gas and Nitrogen Cylinder
Structure: Gas – Liquid Damping Cylinder
Power: Hydraulic
Standard: Standard
Pressure Direction: Single-acting Cylinder
Customization:
Available

|

hydraulic cylinder

What advancements in hydraulic cylinder technology have improved sealing and reliability?

Advancements in hydraulic cylinder technology have continuously contributed to improving sealing and reliability in hydraulic systems. These advancements aim to address common challenges such as leakage, wear, and failure of seals, ensuring optimal performance and longevity. Here are several key advancements that have significantly improved sealing and reliability in hydraulic cylinders:

1. High-Performance Sealing Materials:

– The development of advanced sealing materials has greatly improved the sealing capabilities of hydraulic cylinders. Traditional sealing materials like rubber have been replaced or enhanced with high-performance materials such as polyurethane, PTFE (polytetrafluoroethylene), and various composite materials. These materials offer superior resistance to wear, temperature, and chemical degradation, resulting in improved sealing performance and extended seal life.

2. Enhanced Seal Designs:

– Advancements in seal designs have focused on improving sealing efficiency and reliability. Innovative seal profiles, such as lip seals, wipers, and scrapers, have been developed to optimize fluid retention and prevent contamination. These designs provide better sealing performance, minimizing the risk of fluid leakage and maintaining system integrity. Additionally, improved seal geometries and manufacturing techniques ensure tighter tolerances, reducing the potential for seal failure due to misalignment or extrusion.

3. Integrated Seal and Bearing Systems:

– Hydraulic cylinders now incorporate integrated seal and bearing systems, where the sealing elements also serve as bearing surfaces. This design approach reduces the number of components and potential failure points, improving overall reliability. By integrating seals and bearings, the risk of seal damage or displacement due to excessive loads or misalignment is minimized, resulting in enhanced sealing performance and increased reliability.

4. Advanced Coatings and Surface Treatments:

– The application of advanced coatings and surface treatments to hydraulic cylinder components has significantly improved sealing and reliability. Coatings such as chrome plating or ceramic coatings enhance surface hardness, wear resistance, and corrosion resistance. These surface treatments provide a smoother and more durable surface for seals to operate against, reducing friction and improving sealing performance. Moreover, specialized coatings can also provide self-lubricating properties, reducing the need for additional lubrication and enhancing reliability.

5. Sealing System Monitoring and Diagnostic Technologies:

– The integration of monitoring and diagnostic technologies in hydraulic systems has revolutionized seal performance and reliability. Sensors and monitoring systems can detect and alert operators to potential seal failures or leaks before they escalate. Real-time monitoring of pressure, temperature, and seal performance parameters allows for proactive maintenance and early intervention, preventing costly downtime and ensuring optimal sealing and reliability.

6. Computational Modeling and Simulation:

– Computational modeling and simulation techniques have played a significant role in advancing hydraulic cylinder sealing and reliability. These tools enable engineers to analyze and optimize seal designs, fluid flow dynamics, and contact stresses. By simulating various operating conditions, potential issues such as seal extrusion, wear, or leakage can be identified and mitigated early in the design phase, resulting in improved sealing performance and enhanced reliability.

7. Systematic Maintenance Practices:

– Advances in hydraulic cylinder technology have also emphasized the importance of systematic maintenance practices to ensure sealing and overall system reliability. Regular inspection, lubrication, and replacement of seals, as well as routine system flushing and filtration, help prevent premature seal failure and optimize sealing performance. Implementing preventive maintenance schedules and adhering to recommended service intervals contribute to extended seal life and enhanced reliability.

In summary, advancements in hydraulic cylinder technology have led to significant improvements in sealing and reliability. High-performance sealing materials, enhanced seal designs, integrated seal and bearing systems, advanced coatings and surface treatments, sealing system monitoring and diagnostics, computational modeling and simulation, and systematic maintenance practices have all played key roles in achieving optimal sealing performance and increased reliability. These advancements have resulted in more efficient and dependable hydraulic systems, minimizing leakage, wear, and failure of seals, and ultimately improving the overall performance and longevity of hydraulic cylinders in diverse applications.

hydraulic cylinder

Ensuring Consistent Force Output for Repetitive Tasks with Hydraulic Cylinders

Hydraulic cylinders are designed to ensure consistent force output for repetitive tasks. This consistency is essential for maintaining precise control, achieving uniform results, and optimizing the performance of hydraulic systems. Let’s explore how hydraulic cylinders achieve consistent force output for repetitive tasks:

  1. Design and Manufacturing Standards: Hydraulic cylinders are manufactured to meet strict design and manufacturing standards. These standards ensure that the cylinders are built with precision and accuracy, enabling them to deliver consistent force output. The components, such as the piston, cylinder barrel, seals, and valves, are engineered to work together harmoniously, minimizing variations in force generation.
  2. Pressure Regulation: Hydraulic systems incorporate pressure regulation mechanisms to maintain a constant pressure level. Pressure relief valves, pressure regulators, and pressure-compensated pumps help maintain a consistent hydraulic pressure throughout the system. By regulating the pressure, hydraulic cylinders receive a consistent supply of pressurized fluid, resulting in consistent force output for repetitive tasks.
  3. Flow Control: Flow control valves are utilized in hydraulic systems to manage the flow rate of hydraulic fluid. These valves regulate the speed at which the fluid enters and exits the hydraulic cylinder, influencing the force output. By controlling the flow rate, hydraulic cylinders can achieve consistent force output for repetitive tasks. This is particularly important when it comes to tasks that require precise and uniform force application.
  4. Effective Seal Performance: Sealing systems play a crucial role in hydraulic cylinders by preventing fluid leakage and maintaining pressure integrity. High-quality seals and proper installation ensure effective sealing throughout the cylinder’s operation. By minimizing internal leakage, hydraulic cylinders can maintain consistent force output, even during repetitive tasks.
  5. Maintenance and Inspection: Regular maintenance and inspection of hydraulic cylinders are essential for ensuring consistent force output. By following maintenance schedules, replacing worn-out components, and monitoring cylinder performance, any potential issues that could affect force consistency can be identified and addressed promptly. This proactive approach helps maintain the reliability and performance of hydraulic cylinders over time.

In summary, hydraulic cylinders employ various mechanisms to ensure consistent force output for repetitive tasks. Adherence to design and manufacturing standards, pressure regulation, flow control, effective seal performance, and regular maintenance all contribute to achieving consistent force output. By maintaining precision, minimizing variations, and addressing potential issues, hydraulic cylinders provide reliable and consistent force generation, facilitating the successful completion of repetitive tasks in various applications.

hydraulic cylinder

How do hydraulic cylinders accommodate variations in stroke length and force requirements?

Hydraulic cylinders are designed to accommodate variations in stroke length and force requirements, providing flexibility and adaptability for different applications. They can be tailored to meet specific needs by considering factors such as piston diameter, rod diameter, hydraulic pressure, and cylinder design. Here’s a detailed explanation of how hydraulic cylinders accommodate variations in stroke length and force requirements:

1. Cylinder Size and Design:

– Hydraulic cylinders come in various sizes and designs to accommodate different stroke lengths and force requirements. The cylinder’s diameter, piston area, and rod diameter are key factors that determine the force output. Larger cylinder diameters and piston areas can generate greater force, while smaller diameters are suitable for applications requiring lower force. By selecting the appropriate cylinder size and design, stroke lengths and force requirements can be effectively accommodated.

2. Piston and Rod Configurations:

– Hydraulic cylinders can be designed with different piston and rod configurations to accommodate variations in stroke length. Single-acting cylinders have a single piston and can provide a stroke in one direction. Double-acting cylinders have a piston on both sides, allowing for strokes in both directions. Telescopic cylinders consist of multiple stages that can extend and retract, providing a longer stroke length compared to standard cylinders. By selecting the appropriate piston and rod configuration, the desired stroke length can be achieved.

3. Hydraulic Pressure and Flow:

– The hydraulic pressure and flow rate supplied to the cylinder play a crucial role in accommodating variations in force requirements. Increasing the hydraulic pressure increases the force output of the cylinder, enabling it to handle higher force requirements. By adjusting the pressure and flow rate through hydraulic valves and pumps, the force output can be controlled and matched to the specific requirements of the application.

4. Customization and Tailoring:

– Hydraulic cylinders can be customized and tailored to meet specific stroke length and force requirements. Manufacturers offer a wide range of cylinder sizes, stroke lengths, and force capacities to choose from. Additionally, custom-designed cylinders can be manufactured to suit unique applications with specific stroke length and force demands. By working closely with hydraulic cylinder manufacturers, it is possible to obtain cylinders that precisely match the required stroke length and force requirements.

5. Multiple Cylinders and Synchronization:

– In applications that require high force or longer stroke lengths, multiple hydraulic cylinders can be used in combination. By synchronizing the movement of multiple cylinders through the hydraulic system, the stroke length and force output can be effectively increased. Synchronization can be achieved using mechanical linkages, electronic controls, or hydraulic circuitry, ensuring coordinated movement and force distribution across the cylinders.

6. Load-Sensing and Pressure Control:

– Hydraulic systems can incorporate load-sensing and pressure control mechanisms to accommodate variations in force requirements. Load-sensing systems monitor the load demand and adjust the hydraulic pressure accordingly, ensuring that the cylinder delivers the required force without exerting excessive force. Pressure control valves regulate the pressure within the hydraulic system, allowing for precise control and adjustment of the force output based on the application’s needs.

7. Safety Considerations:

– When accommodating variations in stroke length and force requirements, it is essential to consider safety factors. Hydraulic cylinders should be selected and designed with an appropriate safety margin to handle unexpected loads or variations in operating conditions. Safety mechanisms such as overload protection valves and pressure relief valves can be incorporated to prevent damage or failure in situations where the force limits are exceeded.

By considering factors such as cylinder size and design, piston and rod configurations, hydraulic pressure and flow, customization options, synchronization, load-sensing, pressure control, and safety considerations, hydraulic cylinders can effectively accommodate variations in stroke length and force requirements. This flexibility allows hydraulic cylinders to be tailored to meet the specific demands of a wide range of applications, ensuring optimal performance and efficiency.

China manufacturer 10L High Pressure Oxygen Cylinder Made in China   vacuum pump and compressor	China manufacturer 10L High Pressure Oxygen Cylinder Made in China   vacuum pump and compressor
editor by CX 2023-12-06

Recent Posts